
Parallel implementation of NIOS II multiprocessors, Cepstral
coefficients of Mel frequency and MLP architecture in FPGA:

the application of speech recognition

KHAMLICH SALAH EDDINE1, KHAMLICH FATHALLAH2 , ISSAM ATOUF3, BENRABH
MOHAMED4

1 National School of Applied Sciences, Research teams “SEIA” LaSTI,
Sultan Moulay Slimane University, KHOURIBGA, Morocco

s.khamlich@usms.ma1

2,3,4
LTI Lab. Faculty of Sciences Ben M’sik

Hassan II University, Casablanca- Morocco
khamlich.fathallah@gmail.com2

issamatouf@yahoo.fr3

benrabh@yahoo.fr4

Abstract—Speech processing in real time requires the use of fast, reconfigurable electronic circuits capable of
handling large amounts of information generated by the audio source. This article presents hardware
implementations of a multilayer perceptron (MLP) and the MFCC algorithm for speech recognition. These
algorithms have been implemented in hardware and tested in an on-board electronic card based on a reconfigurable
circuit (FPGA). We also present a comparative study between several architectures of MLP and with the literature
on the level of costs with regard to the surface of silicon, the speed and the computing resources required.
Following the FPGA circuit modification, we created NIOSII processors to physically implement the architecture
of ANN-type MLPs and MFCC speech recognition algorithms and perform real-time speech recognition
functions.

Keywords: Speech recognition, Artificial neural networks, Mel Frequency Cepstral Coefficients MFCC,
MLP,NIOSII, FPGA

1-Introduction:

Most speech processing algorithms require more
complex mathematical operations and a very rich
database to perform a speech recognition task. In order
to be able to physically implement these processing
algorithms, we must use an embedded system which
must be efficient and allow the response to be provided
in real time.

Part 1 of the system presented in this article is limited to
the chain of acquisition of the audio signal, processing
and reproduction of an audio signal supplied by a
microphone. Exploiting the most advanced technologies
of the moment, the architectures of programmable
components must constantly evolve to offer the best
performance in terms of speed, capacity and use. We
will show how to implement an electronic system
capable of processing audio signals on the FPGA DE2-
70 card. Our proposed solution is the use of an
embedded softcore processor leading to hardware /

software which is implemented on a single chip and
which is capable of processing large vocal information.

Our job consists in designing and realizing a real-time
speech processing system based on NIOSII embedded
processors created by the modification of the internal
structure of FPGA circuit.

The prototype of this card is then composed of three
main modules, as shown in Figure 1. The first of these
modules concerns analog to digital conversion, it
consists of the converter and the extractor of the audio
synchronization signals.

The second represents the heart of the card with the
processing part integrated in a programmable
component.

The third module serves as a communication interface
between the card and the users. It consists of an LCD

Received: May 6, 2020. Revised: November 1, 2020. Accepted: November 19, 2020. Published: November 30 , 2020.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 146 Volume 16, 2020

display which allows you to display the recording or
playback status.

Figure 1. Block diagram of the system

In part 2 of our study we proposed two methods to
design a robotic system capable of communicating with
users.

The first method is intended for the preprocessing task
(extraction of audio signals) and the second consists in
carrying out the task of recognizing the speech of the
audio signal immediately after the extraction of the
useful signal [1]. The algorithms proposed to design this
system are the MFCC algorithm for extracting speech
signals, and the artificial neuron network for speech
recognition of signals obtained by MFCC. The objective
of this work is the implementation of the MFCC
algorithm and the artificial neuron network algorithm
(ANN) and more particularly multilayer perceptron type
networks (MLP) [2]. The two algorithms mentioned
above require a very fast processor to perform the
processing, coding, extraction and recognition tasks. In
this article we have proposed a version of the new
generation of on-board reconfigurable processors which
can be created by modifying the internal structure of the
FPGA circuit. This processing system is called NIOSII.

Nous avons étudié la viabilité de la mise en œuvre et
l'efficacité des réseaux de neurones dans le matériel
reconfigurable (FPGA) pour les systèmes embarqués.
Compared with traditional digital implementations of
artificial neuron networks [3][4], our implementation
simplifies the complexity of the computation and saves
digital resources.

2. Mel Frequency Cepstral Algorithm
Coefficients and Artificial Neural
Networks

2-1: Creation of a database by the MFCC
algorithm

In our study, we proposed an intelligent MFCC
algorithm [5] which is widely used in voice signal
extraction. This algorithm includes "listened / not

listened" states, and requires the speaker to wait
between utterances.

In the MFCC algorithm, DTF is first used to calculate
the frequency spectrum of the signal, then DCT is used
to further reduce the redundant information in the
speech signal. DTF and DCT can be used for any speech
segment with fixed resolution time-frequency.

The figure. 2 shows the MFCC extraction flowchart:

Figure. 2: MFCC extraction flowchart

After the creation of our voice database and its coding
in MATLAB, we move on to the step of storing the
results (coded signal) in a “text” file to establish
thereafter the previous steps of the extraction of the
voice characteristics by our MFCC algorithm [6].

Figure 3 shows the basic structure of audio signals and
their extraction by the MFCC algorithm.

Figure 3: Creation of a voice database

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 147 Volume 16, 2020

 Individual files N ° 1 and 2: these are files
containing the audio files, its shape and their
encodings.

- Matrix _wav: the content of this folder is audio files
(matrices) coded by MATLAB the number p ’of matrix
elements is 16000 elements.

-Vector_mfcc: the contents of this folder are voiceprints
of audio signal. These are input elements p of the MLP
(p = 1200 elements).

After creating the fingerprints, we share the vectors in 2
parts, one for learning and the other for testing.
This method of extracting voice characteristics is an
initial step and is carried out before the recognition of
speech by the ANN algorithm.

2-2- MLP-type artificial neural networks:

Automatic speech recognition is the process by which a
computer makes an acoustic voice signal to text [7].
Typically, speech recognition begins with digital speech
sampling. The raw sampled waveform is not suitable as
a direct input for a recognition system. The commonly
adopted approach is to convert the sampled signal into a
sequence of feature vectors using techniques such as
FFT (fast Fourier transform), MFCC and linear
prediction analysis. Speech recognition is achieved in
this work by artificial neural networks (ANN) [8], There
are different types of artificial neural networks, for
example the multilayer perceptron, recurrent networks,
etc. The most widely used neural classifier is the
multilayer perceptron MLP, which has also been widely
analyzed and for which many learning algorithms have
been developed [9]. The creation of the MLP
architecture depends on parameters, such as the number
of iterations, the number of hidden layers, number of
neurons in each layer, the learning database and the
learning rate. In the multilayer Perceptron (Figure.4.
(A)), the neurons of one layer are connected to all of the
neurons of the adjacent layers. These links are subject to
a coefficient altering the effect of the information on the
destination neuron. Thus, the weight of each of these
links is the key element in the operation of the network.
The overall output of each MLP neuron is based on a
sigmoid function thus used, the aim of which is to
maintain the output in the interval [0,1] (Figure.4. (B))
[10][11]. Its main advantage is the existence of its
derivative at all points.

(a)

(b)

Figure. 4. (a) Example of the MLP for isolated word recognition;

(b) most significant interval of the sigmoid activation function

The inputs of the functional unit of the first layer are
calculated as a function of the inputs Xi and of the
weights of the links Wj, the inputs of the functional unit
of the second layer are the outputs of the first layer as
well as their associated weights. Same principle for the
output layer. The equations below represent the
calculation of the outputs of each layer.

The output layer:

 𝑆(𝑧) = 𝐹2(𝑦𝑠(𝑧)) = 1/(1 + 𝑒^(−𝑦௦(𝑧))) (1)
 Such as:

 y
s
(z) = ∑ 𝑊2(𝑖, 𝑧) ∗ 𝐹1

𝑗
𝑖=0 (𝑦(𝑖)) (2)

 So: y(j) = ∑ 𝑊1(𝑖, 𝑗) ∗ 𝑋𝑖
𝑛
𝑖=0 (3)

The establishment of a multilayer perceptron to solve a
problem therefore involves determining the best weights
applicable to each of the inter-neural connections. In
this article, we have focused on automatic speech
recognition. This determination is made using an MLP
(multi-layer perceptron) error back-propagation
algorithm. Compared to traditional digital
implementations of artificial neural networks, our
implementations simplify the complexity of computing
and saving digital resources.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 148 Volume 16, 2020

3- NIOSII processor for speech
processing

We worked on the FPGA version DE2-70 card,
produced by the company Altera (figure 5), to create a
NIOSII embedded processor with these basic
peripherals, this processor is capable of processing
audio signals.

Figure 5: External structure of the FPGA card

For the control of the playback and the recording of the
audio signals, received by means of a microphone, we
use the two pushbuttons B3 and B4. The third push
button, B3, is used to play a signal recorded in
SDRAM1 memory. We also use a fourth push button,
B4, to activate the recording of an audio signal using a
microphone.

We also used six toggle switches which are useful for
configuring the audio system: SW0 is used to specify
the recording source to Line-in or MIC-In. SW3, SW4
and SW5 are used to specify the recording sampling
frequency; 96K, 48K, 44.1K, 32K or 8K. The 16x2 LCD
screen is used to indicate the recording / playback status.
The 7 Segment displays are used to display the
recording and playback time with a duration of 1/100
second. LEDs (light-emitting diode) are used to indicate
the strength of the audio signal.

The design of a system based on IP (intellectual
property) Nios [12] revolves around the use of 3
software.

The first and most important is QuartusII [13] [14]
which allows, thanks to the SOPC Builder tool, to create
all the architecture of the desired system (which goes
from the entry of diagram to the placement routing of
the system in the chosen target). The entire simulation
part of the system containing the IP Nios is performed
with ModelSim software.

Ce logiciel permettra par exemple de vérifier le mode
d’accès du processeur vers l’un de ses périphériques.

Toute la partie de développement logiciel est réalisée
grâce au logiciel ECLIPSE qui comprend entre autres
un assembleur, un compilateur C/C++, un éditeur de
liens, etc.

3.1 Description of the peripherals used

- PLL (Phase-locked loop) module: This block allows
you to create three separate clocks. The first for the Nios
processor CPU, the second for the SDRAM memory
expansion and the third for the audio interface. A
multiplication and division factor makes it possible to
modify the frequency of the system.

- NIOS module: This block contains all the standard
and personalized peripherals that constitute the heart
of the NIOS embedded processor.

Using SOPC Builder, we associate the following
peripherals:

 CPU Nios 32 Bits
 UART (for communications)
 External SRAM interface
 External SRAM bus (Avalon Tri-state Bridge)
 Codec interface (see configuration of this circuit

and an example of recording in the appendix).
 SDRAM1 and 2 controllers for storing audio data

and synaptic weights.
 PIO controller: This is a controller used for

communication between the I/O elements, for
example the LEDs, 7-segment display, push
buttons, switches, I2C (bus to configure the codec
circuit) and the card's outputs memory.

When you finish the NIOS block creation part in the
SOPC Builder tool, you go to the generation stage of the
target system. For this, the following rules must be
observed for the hardware to work well:

 Check that all peripherals are connected to the
processor.

 The memories must not include an overlap in the
allocation of address ranges for the registers of
the various devices.

 All IRQs numbers (hardware interrupts) must be
different.

3.2 Hardware processor

NiosII processors implement a 32-bit instruction set
based on a RISC architecture. Because it is a softcore
processor, FPGA developers can choose countless
system configurations, select the CPU core and choose
the processor peripherals. There are three NiosII CPU
cores: NiosII f (fast), NiosII e (economy) and NiosII s

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 149 Volume 16, 2020

(standard) the choice of these types depends on the
application [12]. We will base ourselves on the quick
version.

Figure 6 presents the complete design of creation of our
simple NIOSII (only one processor) and Figure 7.a
presents the result of compilation of this Hardware
processor by QUARTUS software, but to create a
multiprocessor system we add a module which contains
several CPU figure7.b (multiprocessor compilation
result).

Figure 6: One Simple Hardware Processor

Figure 7.a: Result of a single processor

Figure 7.b: Multiprocessor result

The installation of the hardware of the various
peripherals constituting our system leaves enough space

on the programmable component EP2C70F896C6 for
the addition of other peripherals or the hardware
integration of speech processing algorithms.

Before the simulation, we created a clock and a
configuration counter compatible with NIOSII and the
CODEC circuit linked with the audio inputs and
outputs, then we configured the analog / digital
converter (CODEC) by configuration registers [16].

 3.3-Data recording and reading.

The two modes are selected by the control signal
"play_rec" [16], if this signal is high, recording is
activated, in the opposite case, data reading is then
activated. For each mode, 2 bits "start" and "stop" are
used to control the start and end of these operations.

When recording, we will use I2S mode. Data are
available on the ADCDAT line. For a simple simulation,
we will record the simple data for the right chain and the
left chain (figures 8).

Figure 8: Data records through CODEC

Similarly, we recover the data already recorded on the
DACDAT line while checking that the memories have
received this data "data_left" and "data_right" (see
figures below).

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 150 Volume 16, 2020

Figure 9: Examples of reading data from memory

4.Hardware implementations of
algorithms

 4.1-Hardware implementation of MFCC

This part deals with the hardware implementation in the
FPGA card of the MFCC algorithm. The system
receives an analog signal from the microphone and
sends it to the analog-to-digital ADC converter
integrated in the codec circuit to sample our signal at the
frequency of 1250Hz producing an output of the digital
samples. Each sample is coded on 32-bit signed. The
converter output is connected with 2 registers (left

register and right register) and the size of each is 16 bits.
One applies to the output of these registers the
windowing of Hamming and the transform of discrete
quartermaster DFT which will be in charge of the
computation of the DFT of this vocal sequence. The
windowing and DFT modules are included in the
NIOSII on-board processor which reads the outputs of
the DFT, and checks whether the vocal piece
corresponds to a silence or a speech signal. If it detects
a speech signal, the NIOSII processor performs various
calculations such as normalization, extraction of
characteristics, and storage of fingerprints in an
SDRAM memory.

The block diagram below represents the whole system:

Figure. 10: Hardware extraction of voice signal

4.2 Hardware implementation of MLP

4.2.1 Characteristics of the MLP architecture
implemented

The multilayer perceptron architecture consists of an
input layer which represents the elements of speech
signal objects after the extraction by the MFCC
algorithm, of one or more hidden layers and an output
layer representing the classes (in our case the classes are
the users). After the modification of these parameters
and the test of several architectures of the MLP we
obtained different results, but the best result obtained is
presented in this part which follows.

In this study the number of neurons p = 1100 of the MLP
input layer, corresponding to the number of
characteristics of the input signal. This is the total
number of elements of the matrix obtained by applying
the MFCC.

The number of neurons in the output layer is fixed at c
= 8. The latter is the number of classes existing in the
database of examples used to train the MLP before the
hardware implementation.

Concerning the number of hidden layers and the number
of neurons per hidden layer, we are based on
experimental work. After the variation of the
characteristics (for example change of the neurons for a

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 151 Volume 16, 2020

single hidden layer, increase in the numbers of the
hidden layers, variation of the numbers of iteration and
the database) that we conducted in order to choose the
right values to obtain the good results of classification
and recognition, We obtained as experimental results in
this study many satisfactory values, which we can use
in applications similar to our application envisaged in
this work. Among these values, we choose:

- A single hidden layer

- 7 neurons in the hidden layer

4.2.2 Basic structure of the functional unit

As we can see in equations (2) and (3), the basic
calculations of a single neuron are the multiplication of
the outputs of the connected neurons by their associated
weights, and the sum of these terms multiplied.
Figure.11 describes the basic structure of the functional
unit used for the serial hardware implementation [15]
which performs these calculations. It includes a
multiplier allowing the multiplication of the elements of
the input vector with their corresponding weights. A
sign extension unit is installed just after the multiplier.
The input of the accumulator is connected to the output
of the expansion unit. The output of the accumulator is
linked to the input of the adder.

This functional unit has been implemented in the FPGA
card.

Figure.11: Functional unit

For the implementation of the MLP, we have
established the coding of the data, namely, inputs,
outputs, weights, activation function, etc. therefore, it is
necessary to limit the number of different variables:

• MLP inputs and outputs of the activation functions of
the different neurons: two of them must have the same
range to be able to easily manage several processing
layers. In this context we have chosen 32-bit coding.

• Weight of MLP neuron connections (32-bit coding).

The main storage strategy is the use of SDRAM
modules so that the inputs, outputs, and weights of the
connections are stored in these modules.

In the following, we will describe in detail the hardware
implementation of the MLP (parallel). This type of
implementation is given at two different levels of
abstraction [15].

5-Results and discussions

Figure 12 shows the performance of the three MLP
architectures (Arch1, Arch2 and Arch3) in terms of
global errors, number of hidden layers, number of
neurons in each layer and number of iterations.

Figure 12: Performance of architectures (Arch1, Arch 2, Arch 3)

In the architecture comprising a single hidden layer
made up of 7 neurons, we varied the number of
iterations depending on the global error (see Figure 13).
By analyzing the figure below, we see that the increase
in the number of iterations leads to a reduction in the
overall error during the learning and testing phases.

Figure 13: Variation of global error according to the number of
iterations of Arch1.

Tests for MLP with two and three hidden layers did not
perform better compared to the results obtained using a

0

5

10

15

0
11

0
18

0
21

0
30

0
33

0
36

0
39

0
42

0
45

0
48

0
51

0
60

0
69

0
72

0
79

0
85

0

G
lo

ba
l e

rr
or

s

Iteration numbers

Learning

Apprentissage

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 152 Volume 16, 2020

single hidden layer. The architecture we have proposed
for word recognition has proven its effectiveness in our
application and its result is quite significant. This
confirmed the interest of our approach adopted in this
study.

6-Conclusion:

We can execute the program for several processors out
of the same physical memory, the program of each
processor must be located in its own memory area and
to avoid the conflict between the memory areas of
programs of each processor, it is better to put the
program of each processor in a memory different from
the memory used by another processor.

The hardware/software co-design method described in
this article offers a practical alternative to the software-
centric systems that dominate the market today. The
results of this application can be characterized by the
following parameters:

Number of slices, number of large on-board memory
blocks (EMB) SDRAM, maximum clock frequency and
data rate (Dt) as number of estimated input vectors per
second. We also estimated the number of gates in the
system, trying to represent the global physical resources
(HR) and the data rate (Dt) of each approach.

During the architecture definition process, we assessed
the cost of performance as Pc = Hr/dt. In this way we
can assess how the cost of the equipment required for a
given performance (Fig.14).

Figure 14: NIOS II hardware architecture size

Références

[1] Selene Maya, Rocio Reynoso, César Torres, Miguel
Arias-Estrada, “Compact Spiking Neural Network
Implementation in FPGA” Field-Programmable Logic
and Applications: The Roadmap to Reconfigurable
Computing Lecture Notes in Computer Science Volume
1896, 2000, pp 270-276
[2] M.W Gardner, S.R Dorling, “Artificial neural
networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences” Atmospheric

Environment, Volume 32, Issues 14–15, 1 August 1998,
Pages 2627–2636
[3] M. CHETOUANI, "Codage neuro-prédictif pour
l’extraction de caractéristiques de signaux de parole",
Thèse à l’Université Pierre & Marie Curie, 14 décembre
2004
[4] Jihan Zhu and Peter Sutton, " FPGA
Implementations of Neural Networks-a Survey of a
Decade of Progress, " In proceeding of 13th
International Conference on Field Programmable Logic
and Applications (FPL 2003), Lisbon, Sep 2003.
[5] Wei Han, Cheong -Fat Chan, Chiu-Sing Choy,
Kong-Pang Pun, "An efficient MFCC extraction
method in speech recognition",. IEEE ISCAS, 2006.
[6] Ellis, D., 2005. Reproducing the feature outputs of
common programs using Matlab and melfcc.m. url:
http://labrosa.ee.columbia.edu/matlab/rastamat/mfccs.h
tmla

[7] L. Rabiner, B.H. Juang, Fundamentals of Speech
Recognition, Prentice-Hall, 1993.
[8] R.P. Lippmann, Review of neural networks for
speech recognition, Neural Comput. 1 (1) (1989) 1–38.
[9] B. Widrow, M. Lehr, 30 years of adaptive neural
networks: Perceptron, Madaline and Backpropagation,
Proc. IEEE 78 (9) (1990) 1415–1442.
[10]Christopher M. Bishop, Pattern Recognition And
Machine Learning, Springer, 2006 , ISBN 0-387-
31073-8
[11]Marc Parizeau, Neural networks (The multilayer
perceptron and its error backpropagation algorithm),
Université Laval, Laval, 2004, 272 p.

[12] NIOSII Documentation:
www.altera.com/products/ip/processors/nios2.

[13] Outils Altera sous Linux :
ftp://ftp.altera.com/outgoing/release

[14] Quartus II Software information and download.
http://www.altera.com/products/software/quartus-ii

[15] S.KHAMLICH, A.HAMDOUN, I.ATOUF and M.
MADIAFI “Serial Hardware Implementation of the
MFCC and MLP Architecture on FPGA Circuit”
International Journal of Engineering and Technology
(IJET) Vol 5 No 4 Aug-Sep 2013 ISSN : 0975-4024
pp. 3520- 3526.

[16] John Loomis, Altera and Wolfson
microelectronics,WM8731/WM8731L Portable
Internet Audio CODEC with Headphone Driver and
Programmable Sample Rates, version 1.4, 2006

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 153 Volume 16, 2020

Contribution of individual authors to the
creation of a scientific article
SALAHEDDINE KHAMLICH AND FATHALLAH
KHAMLICH, are working on programming in C and C
++ voice recognition algorithms (ANN and MFCC) and
the creation of a learning and simulation database and
finally the physical implementation of these algorithms
on the FPGA board.

ISSAM ATOUF is working on the hardware design of
NIOSII processor and the simulation of voice
recognition system on the FPGA board.

the project proposed and supervised by BENRABH
MOHAMED

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.16

Khamlich Salah Eddine, Khamlich Fathallah,
Issam Atouf, Benrabh Mohamed

E-ISSN: 2224-3488 154 Volume 16, 2020

