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Abstract—Speech processing in real time requires the use of fast, reconfigurable electronic circuits capable of 
handling large amounts of information generated by the audio source. This article presents hardware 
implementations of a multilayer perceptron (MLP) and the MFCC algorithm for speech recognition. These 
algorithms have been implemented in hardware and tested in an on-board electronic card based on a reconfigurable 
circuit (FPGA). We also present a comparative study between several architectures of MLP and with the literature 
on the level of costs with regard to the surface of silicon, the speed and the computing resources required. 
Following the FPGA circuit modification, we created NIOSII processors to physically implement the architecture 
of ANN-type MLPs and MFCC speech recognition algorithms and perform real-time speech recognition 
functions. 

Keywords: Speech recognition, Artificial neural networks, Mel Frequency Cepstral Coefficients MFCC, 
MLP,NIOSII, FPGA 

1-Introduction: 

Most speech processing algorithms require more 
complex mathematical operations and a very rich 
database to perform a speech recognition task. In order 
to be able to physically implement these processing 
algorithms, we must use an embedded system which 
must be efficient and allow the response to be provided 
in real time.  

Part 1 of the system presented in this article is limited to 
the chain of acquisition of the audio signal, processing 
and reproduction of an audio signal supplied by a 
microphone. Exploiting the most advanced technologies 
of the moment, the architectures of programmable 
components must constantly evolve to offer the best 
performance in terms of speed, capacity and use. We 
will show how to implement an electronic system 
capable of processing audio signals on the FPGA DE2-
70 card. Our proposed solution is the use of an 
embedded softcore processor leading to hardware / 

software which is implemented on a single chip and 
which is capable of processing large vocal information. 

Our job consists in designing and realizing a real-time 
speech processing system based on NIOSII embedded 
processors created by the modification of the internal 
structure of FPGA circuit.  

The prototype of this card is then composed of three 
main modules, as shown in Figure 1. The first of these 
modules concerns analog to digital conversion, it 
consists of the converter and the extractor of the audio 
synchronization signals.       

The second represents the heart of the card with the 
processing part integrated in a programmable 
component. 

The third module serves as a communication interface 
between the card and the users. It consists of an LCD 
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display which allows you to display the recording or 
playback status. 

 

Figure 1. Block diagram of the system 

In part 2 of our study we proposed two methods to 
design a robotic system capable of communicating with 
users.  

The first method is intended for the preprocessing task 
(extraction of audio signals) and the second consists in 
carrying out the task of recognizing the speech of the 
audio signal immediately after the extraction of the 
useful signal [1]. The algorithms proposed to design this 
system are the MFCC algorithm for extracting speech 
signals, and the artificial neuron network for speech 
recognition of signals obtained by MFCC. The objective 
of this work is the implementation of the MFCC 
algorithm and the artificial neuron network algorithm 
(ANN) and more particularly multilayer perceptron type 
networks (MLP) [2]. The two algorithms mentioned 
above require a very fast processor to perform the 
processing, coding, extraction and recognition tasks. In 
this article we have proposed a version of the new 
generation of on-board reconfigurable processors which 
can be created by modifying the internal structure of the 
FPGA circuit. This processing system is called NIOSII.  

Nous avons étudié la viabilité de la mise en œuvre et 
l'efficacité des réseaux de neurones dans le matériel 
reconfigurable (FPGA) pour les systèmes embarqués. 
Compared with traditional digital implementations of 
artificial neuron networks [3][4], our implementation 
simplifies the complexity of the computation and saves 
digital resources. 

2. Mel Frequency Cepstral Algorithm 
Coefficients and Artificial Neural 
Networks 

2-1: Creation of a database by the MFCC 
algorithm 

In our study, we proposed an intelligent MFCC 
algorithm [5] which is widely used in voice signal 
extraction. This algorithm includes "listened / not 

listened" states, and requires the speaker to wait 
between utterances.  

In the MFCC algorithm, DTF is first used to calculate 
the frequency spectrum of the signal, then DCT is used 
to further reduce the redundant information in the 
speech signal. DTF and DCT can be used for any speech 
segment with fixed resolution time-frequency. 

The figure. 2 shows the MFCC extraction flowchart: 

 

Figure. 2: MFCC extraction flowchart 

After the creation of our voice database and its coding 
in MATLAB, we move on to the step of storing the 
results (coded signal) in a “text” file to establish 
thereafter the previous steps of the extraction of the 
voice characteristics by our MFCC algorithm [6]. 

Figure 3 shows the basic structure of audio signals and 
their extraction by the MFCC algorithm. 

 

 

Figure 3: Creation of a voice database 
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 Individual files N ° 1 and 2: these are files 
containing the audio files, its shape and their 
encodings. 

- Matrix _wav: the content of this folder is audio files 
(matrices) coded by MATLAB the number p ’of matrix 
elements is 16000 elements. 

-Vector_mfcc: the contents of this folder are voiceprints 
of audio signal. These are input elements p of the MLP 
(p = 1200 elements). 

After creating the fingerprints, we share the vectors in 2 
parts, one for learning and the other for testing.                                                                                                         
This method of extracting voice characteristics is an 
initial step and is carried out before the recognition of 
speech by the ANN algorithm. 

2-2- MLP-type artificial neural networks: 

Automatic speech recognition is the process by which a 
computer makes an acoustic voice signal to text [7]. 
Typically, speech recognition begins with digital speech 
sampling. The raw sampled waveform is not suitable as 
a direct input for a recognition system. The commonly 
adopted approach is to convert the sampled signal into a 
sequence of feature vectors using techniques such as 
FFT (fast Fourier transform), MFCC and linear 
prediction analysis. Speech recognition is achieved in 
this work by artificial neural networks (ANN) [8], There 
are different types of artificial neural networks, for 
example the multilayer perceptron, recurrent networks, 
etc. The most widely used neural classifier is the 
multilayer perceptron MLP, which has also been widely 
analyzed and for which many learning algorithms have 
been developed [9]. The creation of the MLP 
architecture depends on parameters, such as the number 
of iterations, the number of hidden layers, number of 
neurons in each layer, the learning database and the 
learning rate. In the multilayer Perceptron (Figure.4. 
(A)), the neurons of one layer are connected to all of the 
neurons of the adjacent layers. These links are subject to 
a coefficient altering the effect of the information on the 
destination neuron. Thus, the weight of each of these 
links is the key element in the operation of the network. 
The overall output of each MLP neuron is based on a 
sigmoid function thus used, the aim of which is to 
maintain the output in the interval [0,1] (Figure.4. (B)) 
[10][11]. Its main advantage is the existence of its 
derivative at all points. 

 

 

(a) 

 

(b) 

 
Figure. 4. (a) Example of the MLP for isolated word recognition; 

(b) most significant interval of the sigmoid activation function 

The inputs of the functional unit of the first layer are 
calculated as a function of the inputs Xi and of the 
weights of the links Wj, the inputs of the functional unit 
of the second layer are the outputs of the first layer as 
well as their associated weights. Same principle for the 
output layer. The equations below represent the 
calculation of the outputs of each layer. 

The output layer:  

                𝑆(𝑧) = 𝐹2(𝑦𝑠(𝑧)) = 1/(1 + 𝑒^(−𝑦௦(𝑧)) )  (1)           
  Such as: 

               y
s
(z) = ∑ 𝑊2(𝑖, 𝑧) ∗ 𝐹1

𝑗
𝑖=0 (𝑦(𝑖))      (2)                           

 So:        y(j) = ∑ 𝑊1(𝑖, 𝑗) ∗ 𝑋𝑖
𝑛
𝑖=0                 (3)

                                            

The establishment of a multilayer perceptron to solve a 
problem therefore involves determining the best weights 
applicable to each of the inter-neural connections. In 
this article, we have focused on automatic speech 
recognition. This determination is made using an MLP 
(multi-layer perceptron) error back-propagation 
algorithm. Compared to traditional digital 
implementations of artificial neural networks, our 
implementations simplify the complexity of computing 
and saving digital resources. 
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3- NIOSII processor for speech 
processing 

We worked on the FPGA version DE2-70 card, 
produced by the company Altera (figure 5), to create a 
NIOSII embedded processor with these basic 
peripherals, this processor is capable of processing 
audio signals. 

 

Figure 5: External structure of the FPGA card 

For the control of the playback and the recording of the 
audio signals, received by means of a microphone, we 
use the two pushbuttons B3 and B4. The third push 
button, B3, is used to play a signal recorded in 
SDRAM1 memory. We also use a fourth push button, 
B4, to activate the recording of an audio signal using a 
microphone. 

We also used six toggle switches which are useful for 
configuring the audio system: SW0 is used to specify 
the recording source to Line-in or MIC-In. SW3, SW4 
and SW5 are used to specify the recording sampling 
frequency; 96K, 48K, 44.1K, 32K or 8K. The 16x2 LCD 
screen is used to indicate the recording / playback status. 
The 7 Segment displays are used to display the 
recording and playback time with a duration of 1/100 
second. LEDs (light-emitting diode) are used to indicate 
the strength of the audio signal. 

The design of a system based on IP (intellectual 
property) Nios [12] revolves around the use of 3 
software. 

The first and most important is QuartusII [13] [14] 
which allows, thanks to the SOPC Builder tool, to create 
all the architecture of the desired system (which goes 
from the entry of diagram to the placement routing of 
the system in the chosen target). The entire simulation 
part of the system containing the IP Nios is performed 
with ModelSim software. 

Ce logiciel permettra par exemple de vérifier le mode 
d’accès du processeur vers l’un de ses périphériques. 

Toute la partie de développement logiciel est réalisée 
grâce au logiciel ECLIPSE qui comprend entre autres 
un assembleur, un compilateur C/C++, un éditeur de 
liens, etc. 

3.1 Description of the peripherals used 

- PLL (Phase-locked loop) module: This block allows 
you to create three separate clocks. The first for the Nios 
processor CPU, the second for the SDRAM memory 
expansion and the third for the audio interface. A 
multiplication and division factor makes it possible to 
modify the frequency of the system. 

- NIOS module: This block contains all the standard 
and personalized peripherals that constitute the heart 
of the NIOS embedded processor. 

Using SOPC Builder, we associate the following 
peripherals: 

 CPU Nios 32 Bits 
 UART (for communications) 
 External SRAM interface 
 External SRAM bus (Avalon Tri-state Bridge) 
 Codec interface (see configuration of this circuit 

and an example of recording in the appendix). 
 SDRAM1 and 2 controllers for storing audio data 

and synaptic weights. 
 PIO controller: This is a controller used for 

communication between the I/O elements, for 
example the LEDs, 7-segment display, push 
buttons, switches, I2C (bus to configure the codec 
circuit) and the card's outputs memory. 

When you finish the NIOS block creation part in the 
SOPC Builder tool, you go to the generation stage of the 
target system. For this, the following rules must be 
observed for the hardware to work well: 

 Check that all peripherals are connected to the 
processor. 

 The memories must not include an overlap in the 
allocation of address ranges for the registers of 
the various devices. 

 All IRQs numbers (hardware interrupts) must be 
different. 

3.2 Hardware processor 

NiosII processors implement a 32-bit instruction set 
based on a RISC architecture. Because it is a softcore 
processor, FPGA developers can choose countless 
system configurations, select the CPU core and choose 
the processor peripherals. There are three NiosII CPU 
cores: NiosII f (fast), NiosII e (economy) and NiosII s 
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(standard) the choice of these types depends on the 
application [12]. We will base ourselves on the quick 
version. 

Figure 6 presents the complete design of creation of our 
simple NIOSII (only one processor) and Figure 7.a 
presents the result of compilation of this Hardware 
processor by QUARTUS software, but to create a 
multiprocessor system we add a module which contains 
several CPU figure7.b (multiprocessor compilation 
result). 

 

Figure 6: One Simple Hardware Processor 

 

Figure 7.a: Result of a single processor 

 

Figure 7.b: Multiprocessor result 

The installation of the hardware of the various 
peripherals constituting our system leaves enough space 

on the programmable component EP2C70F896C6 for 
the addition of other peripherals or the hardware 
integration of speech processing algorithms. 

Before the simulation, we created a clock and a 
configuration counter compatible with NIOSII and the 
CODEC circuit linked with the audio inputs and 
outputs, then we configured the analog / digital 
converter (CODEC) by configuration registers [16]. 

 3.3-Data recording and reading. 

The two modes are selected by the control signal 
"play_rec" [16], if this signal is high, recording is 
activated, in the opposite case, data reading is then 
activated. For each mode, 2 bits "start" and "stop" are 
used to control the start and end of these operations. 

When recording, we will use I2S mode. Data are 
available on the ADCDAT line. For a simple simulation, 
we will record the simple data for the right chain and the 
left chain (figures 8). 

 

 

 

Figure 8: Data records through CODEC 

Similarly, we recover the data already recorded on the 
DACDAT line while checking that the memories have 
received this data "data_left" and "data_right" (see 
figures below). 
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Figure 9: Examples of reading data from memory 

4.Hardware implementations of 
algorithms 

 4.1-Hardware implementation of MFCC 

This part deals with the hardware implementation in the 
FPGA card of the MFCC algorithm. The system 
receives an analog signal from the microphone and 
sends it to the analog-to-digital ADC converter 
integrated in the codec circuit to sample our signal at the 
frequency of 1250Hz producing an output of the digital 
samples. Each sample is coded on 32-bit signed. The 
converter output is connected with 2 registers (left 

register and right register) and the size of each is 16 bits. 
One applies to the output of these registers the 
windowing of Hamming and the transform of discrete 
quartermaster DFT which will be in charge of the 
computation of the DFT of this vocal sequence. The 
windowing and DFT modules are included in the 
NIOSII on-board processor which reads the outputs of 
the DFT, and checks whether the vocal piece 
corresponds to a silence or a speech signal. If it detects 
a speech signal, the NIOSII processor performs various 
calculations such as normalization, extraction of 
characteristics, and storage of fingerprints in an 
SDRAM memory. 

The block diagram below represents the whole system: 

 

Figure. 10: Hardware extraction of voice signal 

4.2 Hardware implementation of MLP 

4.2.1 Characteristics of the MLP architecture 
implemented 

The multilayer perceptron architecture consists of an 
input layer which represents the elements of speech 
signal objects after the extraction by the MFCC 
algorithm, of one or more hidden layers and an output 
layer representing the classes (in our case the classes are 
the users). After the modification of these parameters 
and the test of several architectures of the MLP we 
obtained different results, but the best result obtained is 
presented in this part which follows. 

In this study the number of neurons p = 1100 of the MLP 
input layer, corresponding to the number of 
characteristics of the input signal. This is the total 
number of elements of the matrix obtained by applying 
the MFCC. 

The number of neurons in the output layer is fixed at c 
= 8. The latter is the number of classes existing in the 
database of examples used to train the MLP before the 
hardware implementation. 

Concerning the number of hidden layers and the number 
of neurons per hidden layer, we are based on 
experimental work. After the variation of the 
characteristics (for example change of the neurons for a 
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single hidden layer, increase in the numbers of the 
hidden layers, variation of the numbers of iteration and 
the database) that we conducted in order to choose the 
right values to obtain the good results of classification 
and recognition, We obtained as experimental results in 
this study many satisfactory values, which we can use 
in applications similar to our application envisaged in 
this work. Among these values, we choose: 

- A single hidden layer 

- 7 neurons in the hidden layer 

4.2.2 Basic structure of the functional unit 

As we can see in equations (2) and (3), the basic 
calculations of a single neuron are the multiplication of 
the outputs of the connected neurons by their associated 
weights, and the sum of these terms multiplied. 
Figure.11 describes the basic structure of the functional 
unit used for the serial hardware implementation [15] 
which performs these calculations. It includes a 
multiplier allowing the multiplication of the elements of 
the input vector with their corresponding weights. A 
sign extension unit is installed just after the multiplier. 
The input of the accumulator is connected to the output 
of the expansion unit. The output of the accumulator is 
linked to the input of the adder. 

This functional unit has been implemented in the FPGA 
card. 

 

Figure.11: Functional unit 

For the implementation of the MLP, we have 
established the coding of the data, namely, inputs, 
outputs, weights, activation function, etc. therefore, it is 
necessary to limit the number of different variables: 

• MLP inputs and outputs of the activation functions of 
the different neurons: two of them must have the same 
range to be able to easily manage several processing 
layers. In this context we have chosen 32-bit coding. 

• Weight of MLP neuron connections (32-bit coding). 

The main storage strategy is the use of SDRAM 
modules so that the inputs, outputs, and weights of the 
connections are stored in these modules. 

In the following, we will describe in detail the hardware 
implementation of the MLP (parallel). This type of 
implementation is given at two different levels of 
abstraction [15]. 

5-Results and discussions 

Figure 12 shows the performance of the three MLP 
architectures (Arch1, Arch2 and Arch3) in terms of 
global errors, number of hidden layers, number of 
neurons in each layer and number of iterations. 

 

Figure 12: Performance of architectures (Arch1, Arch 2, Arch 3) 

In the architecture comprising a single hidden layer 
made up of 7 neurons, we varied the number of 
iterations depending on the global error (see Figure 13). 
By analyzing the figure below, we see that the increase 
in the number of iterations leads to a reduction in the 
overall error during the learning and testing phases. 

 

Figure 13: Variation of global error according to the number of 
iterations of Arch1. 

Tests for MLP with two and three hidden layers did not 
perform better compared to the results obtained using a 
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single hidden layer. The architecture we have proposed 
for word recognition has proven its effectiveness in our 
application and its result is quite significant. This 
confirmed the interest of our approach adopted in this 
study. 

6-Conclusion: 

We can execute the program for several processors out 
of the same physical memory, the program of each 
processor must be located in its own memory area and 
to avoid the conflict between the memory areas of 
programs of each processor, it is better to put the 
program of each processor in a memory different from 
the memory used by another processor. 

The hardware/software co-design method described in 
this article offers a practical alternative to the software-
centric systems that dominate the market today. The 
results of this application can be characterized by the 
following parameters: 

Number of slices, number of large on-board memory 
blocks (EMB) SDRAM, maximum clock frequency and 
data rate (Dt) as number of estimated input vectors per 
second. We also estimated the number of gates in the 
system, trying to represent the global physical resources 
(HR) and the data rate (Dt) of each approach. 

During the architecture definition process, we assessed 
the cost of performance as Pc = Hr/dt. In this way we 
can assess how the cost of the equipment required for a 
given performance (Fig.14). 

 

Figure 14: NIOS II hardware architecture size 
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